New Fluorophores with Rod-Shaped Polycyano π -Conjugated Structures: Synthesis and Photophysical Properties

LETTERS 2006 Vol. 8, No. 4 717-720

ORGANIC

Yoshihiro Yamaguchi,* Takanori Ochi, Tateaki Wakamiya, Yoshio Matsubara, and Zen-ichi Yoshida*

Department of Chemistry, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

yamaguch@chem.kindai.ac.jp; yoshida@chem.kindai.ac.jp

Received November 30, 2005

Novel rod-shaped polycyano-oligo(phenyleneethynylene)s were synthesized by Pd cross-coupling reaction. Polycyano groups were found to greatly improve the emission efficiency (Φ_f) of OPEs. By the end donor modification, we achieved the creation of very intense blue light-emitting fluorophore with the SMe group ($\Phi_f = 0.972$, log ϵ 4.89, λ_{em} 455 nm) and very intense yellow light-emitting fluorophore with the NMe₂ group ($\Phi_f = 0.999$, log ϵ 4.75, λ_{em} 555 nm). Contrasting Φ_f solvent dependency of 6 and 7 and a linear relationship between Φ_f and σ_p -X over the whole region of σ_p -X were also found.

Polycyano π -conjugated systems represented by tetracyanoethylene (TCNE) and 7,7,8,8-tetracyano-quinodimethane (TCNQ) continue to attract great interest as strong electron acceptors, in particular in the fields of organic conductors¹ and ferromagnets.² However, to the best of our knowledge, fluorescence characteristics of polycyano π -systems have not been reported so far, even though electroluminescent polyphenylenevinylenes with cyano groups have been reported.³ In view of the increasing importance of strongly light-emitting fluorophores ($\Phi_f \approx 1.0$, log $\epsilon \approx 5$)⁴ in biological, chemical, and materials science, we report here the synthesis and excellent light-emitting properties of polycyano-oligo(phen-

10.1021/ol0528991 CCC: \$33.50 © 2006 American Chemical Society Published on Web 01/28/2006 yleneethynylene)s (polycyano OPEs, 1-3) and polycyanotetrameric PEs (4-7) with a donor group substituting the end cyano group of 3 (Figure 1) together with the parent

OPEs (8, dimeric PE; 9, trimeric PE; 10, tetrameric PE) as the reference systems (synthesis of 9 and 10, see Supporting Information).

 ^{(1) (}a) Ferraris, J.; Cowan, D. O.; Walatka, V. V., Jr.; Perlstein, J. H. J. Am. Chem. Soc. **1973**, 95, 948. (b) Coleman, L. B.; Cohen, M. J.; Sandman, D. J.; Yamagishi, F. G.; Garito, A. F.; Heeger, A. J. Solid State Commun. **1973**, 12, 1125. (c) Nakasuji, K.; Sasaki, M.; Kotani, T.; Murata, I.; Enoki, T.; Imaeda, K.; Inokuchi, H.; Kawamoto, A.; Tanaka, J. J. Am. Chem. Soc. **1987**, 109, 6970.

^{(2) (}a) Sugimoto, T.; Murahashi, E.; Ikeda, K.; Yoshida, Z.; Nakatsuji, H.; Yamaguchi, J.; Kai, Y.; Kasai, N. *Mater. Res. Soc. Symp. Proc.* **1992**, 247, 417. (b) Sugimoto, T. *New Funct. Mater.* **1993**, *C*, 369.

⁽³⁾ For example, see: (a) Krasoviskii, B. M.; Bolotin, B. M. Organic Luminescenct Materials; VCH: Weinheim, Germany, 1988; pp 23–29. (b) Fahlman, M.; Salaneck, W. R.; Morakt, S. C.; Holmes, A. B.; Bredas, J. L. Chem. Eur. J. **1997**, *3*, 286. (c) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. **1998**, *37*, 402.

^{(4) (}a) Yamaguchi, Y.; Tanaka, T.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. J. Am. Chem. Soc. **2005**, 127, 9332 and references therein. (b) Bunz, U. H. F. Chem. Rev. **2000**, 100, 1605.

The synthesis of polycyano OPEs (1-3) was effectively accomplished by Pd cross-coupling reaction as shown in Scheme 1.

Emission and absorption characteristics⁵ of **1**–**3** and the parent OPEs (**8**–**10**) together with radiative rate constant (k_r), radiationless rate constant (k_d), k_r/k_d (our measure for emissivity), and emission lifetime (τ) are shown in Table 1.

Table 1.	Photophysical Properties of Polycyano OPEs (1–3)
and the C	orresponding Parent OPEs (8–10) (in $CHCl_3$) ^{<i>a</i>}

comp	$\Phi_{\mathrm{f}}{}^{b}$		$\log \epsilon$		τ (ns)	$k_{\rm r}({\rm s}^{-1})$	$k_{ m d}({ m s}^{-1})$	$k_{ m r}/k_{ m d}$
1						$1.71 imes 10^8$		
2	0.783	370	4.74	340		$4.29 imes10^8$		
3	0.858	392	4.94	357	1.14	$7.51 imes10^8$	$1.24 imes10^8$	6.04
8	0.003	320	4.41	299	3.89	$8.74 imes10^5$	$2.56 imes10^8$	0.003
9	0.500	348	4.59	328	2.57	$1.95 imes 10^8$	$1.95 imes 10^8$	1.00
10	0.610	387	4.77	345	1.70	$3.59 imes 10^8$	$2.30 imes 10^8$	1.56

 a All spectra were measured at 295 K. b Quantum yield is calculated relative to quinine ($\Phi_f=0.55$ in 0.1 M H_2SO_4).

Since k_r and k_d are related to the corresponding emission quantum yields and lifetimes by $\Phi_f = k_r \times \tau$ and $k_r + k_d = \tau^{-1}$, it is possible to calculate the values of k_r and k_d wherever quantum yield and lifetime data are available.⁶ As seen in Table 1, it is evident that the introduction of cyano groups at the side and end of rod-shaped OPEs increases the $\Phi_{\rm f}$ and $\lambda_{\rm em}$ values compared with those of the parent OPEs (8–10). In particular, tetracyano-tetrameric OPE 3 exhibits a red shift of the fluorescence emission maximum and a significant increase in the quantum yield, thus providing the highly efficient violet fluorophore ($\Phi_{\rm f}$ 0.86, $\lambda_{\rm em}$ 392 nm).

It is worth noting that polycyano groups play an important role for improvement of the emission characteristics (in particular, of Φ_f and λ_{em}). The superior emissive properties of **1**-**3** relative to **8**-**10** is ascribed to the increase in their k_r values and the decrease in their k_d values compared with those for **8**-**10**, which seems to be explained by easier formation of a dipolar unit (exciton) by CN groups (see Supporting Information). This is obvious from the slopes for linear plots of k_r versus *n* (number of 2-cyanophenyleneethynylene units) for **1**-**3** (2.90 × 10⁸) and for **8**-**10** (1.79

⁽⁵⁾ The compounds were purified by repeated column chromatography followed by recrystallization. Quite different from the usual case (purity checked by NMR, elemental analysis, etc.: $10^{-2}-10^{-3}$ impurity), purity of organic fluorescent compounds was checked by constancy of the fluorescence intensity at the maximum (λ_{em}) ($10^{-6}-10^{-7}$ impurity).

^{(6) (}a) Barltrop, J. A.; Coyle, J. D. *Principles of photochemistry*; Wiley: New York, 1978; p 68. (b) Leventis, N.; Rawashdeh, A.-M. M.; Elder, I. A.; Yang, J.; Dass, A.; Sotiriou-Leventis, C. *Chem. Mater.* **2004**, *16*, 1493.

× 10⁸) and the slopes for linear plots of k_d versus *n* for **1–3** (-0.42 × 10⁸) and for **8–10** (-0.13 × 10⁸). This linear relationship could be explained by movability of the dipolar unit (exciton) (see Supporting Information).

Further search was made for the more intense fluorophores ($\Phi_{\rm f} \approx 1.0$, log $\epsilon \approx 5$) at the desired wavelength region, for example, at blue (around 460 nm) and yellow (around 550 nm) regions. For this purpose we considered the end modification of **3** with a donor group (**4**, SMe; **5**, Me; **6**, OMe; **7**, NMe₂) in place of the end cyano group^{4a,7} and synthesized them by the reactions shown in Scheme 1.

Emission and absorption characteristics of polycyanotetrameric PEs (4–7) modified by the end donor group together with the τ , k_r , k_d , and k_r/k_d values are summarized in Table 2. As seen in Table 2, the introduction of end-donor

Table 2. Emission and Absorption Characteristics of Donor-Substituted Polycyano-tetrameric PEs (4-7) (in CHCl₃)^{*a*}

comp	$\Phi_{\mathrm{f}}{}^{b}$		$\log\epsilon$		τ (ns)	$k_{\rm r}({\rm s}^{-1})$	$k_{\rm d}({ m s}^{-1})$	$k_{\rm r}/k_{\rm d}$
5 6	$0.960 \\ 0.982$	$\begin{array}{c} 403\\ 434 \end{array}$	$\begin{array}{c} 4.91 \\ 4.87 \end{array}$	$360 \\ 371$	$1.23 \\ 1.36$	$\begin{array}{c} 7.78\times10^8\\ 7.22\times10^8\end{array}$	$\begin{array}{c} 2.17 \times 10^{7} \\ 3.24 \times 10^{7} \\ 1.32 \times 10^{7} \\ 5.62 \times 10^{5} \end{array}$	$\begin{array}{c} 24.00\\ 54.56\end{array}$

 a All spectra were measured at 295 K. b Quantum yield is calculated relative to quinine ($\Phi_f=0.55$ in 0.1 M H_2SO_4).

group to tricyano-tetrameric PE significantly improves the $\Phi_{\rm f}$, $\lambda_{\rm em}$, and $k_{\rm r}/k_{\rm d}$ values compared with those of tetracyanotetrameric PE **3**. Thus we achieved the creation of a very intense blue fluorophore with the SMe group ($\Phi_{\rm f}$ 0.972, log ϵ 4.89, $\lambda_{\rm em}$ 455 nm) and very intense yellow fluorophore with the NMe₂ group ($\Phi_{\rm f}$ 0.999, log ϵ 4.75, $\lambda_{\rm em}$ 555 nm). Fluorescence spectra and colors of **3**, **4**, and **7** are shown in Figure 2.

Figure 2. Fluorescence spectra and colors of 3, 4, and 7 in CHCl₃.

This sort of end-donor modification of polycyano OPEs is superior to the end-acceptor modification of polymethoxy

OPEs^{4a} with respect to the emission characteristics. From the obtained results, it is suggested that strongly fluorescent materials at a desired wavelength region could be created by (1) selection of number and position of the appropriate donor groups (D) at the terminal benzene ring of **36**, (2) selection of number and position of cyano groups in **36**, and (3) selection of number of phenyleneethynylene unit.

Figure 3. Molecular design for the strongly fluorescent materials.

In regard to structure-emissivity relationship, we found out that the quantum yield (Φ_f) linearly increases with an increase in electron-donating ability of end-substituent X as shown in Figure 4 where the linear relationship between Φ_f

Figure 4. The relationship between quantum yield (Φ_f) and substituent constant (σ_p -X) for the substituent X of terminal benzene ring of the donor-substituted polycyano-tetrameric PEs (4–7) and **35** (X = H), and tetracyano-tetrameric PE **3** (X = CN). Hammett substituent constants (σ_p -X):⁸ 0.66 (**3**, X = CN), 0.00 (**4**, X = SMe), 0.00 (**35**, X = H), -0.17 (**5**, X = Me), -0.27 (**6**, X = OMe), -0.83 (**7**, X = NMe₂).

and the Hammett substituent constants $(\sigma_p - X)^8$ is kept over the whole region of σ_p -X values including a cyano group.

The effect of solvent on the photophysical properties of **6** and **7** is shown in Table 3. As shown in this table, the solvent effect on emission efficiency (Φ_f) of **6** (X = OMe) and **7** (X = NMe₂) is quite contrasting. Almost no solvent effect is observed for the absorption spectra of both **6** and **7**,

⁽⁷⁾ Other examples of the donor-acceptor substituted OPEs: (a) Marsden, J. A.; Miller, J. J.; Shircliff, L. D.; Haley M. M. J. Am. Chem. Soc. **2005**, *127*, 2464. (b) Wilson, J. N.; Bunz, H. F. J. Am. Chem. Soc. **2005**, *127*, 4124.

⁽⁸⁾ Hansch, C.; Leo, A.; Taft, W. Chem. Rev. 1991, 91, 165.

Table 3. Effect of Solvent on Absorption and Fluorescence Characteristics of **6** and 7^a

comp	solvent	Φ_{f}	$_{(nm)}^{\lambda_{em}}$	$\log \epsilon$	$_{(nm)}^{\lambda_{abs}}$	$k_{\rm r}({\rm s}^{-1})$	$k_{\rm d}({\rm s}^{-1})$	$k_{\rm r}/k_{\rm d}$
6	benzene	0.972	420	4.84	371	$6.72 imes 10^8$	$1.94 imes 10^7$	34.71
	$CHCl_3$	0.982	434	4.87	371	$7.22 imes 10^8$	$1.32 imes 10^7$	54.56
	THF	0.972	460	4.89	369	$7.55 imes 10^8$	$2.17 imes 10^7$	34.71
	CH_3CN	0.973	490	4.89	364	$7.55 imes 10^8$	$2.10 imes 10^7$	36.04
	DMF	0.949	513	4.86	369	$6.87 imes 10^8$	$3.69 imes 10^7$	18.61
7	benzene	0.999	519	4.76	426	$5.75 imes 10^8$	$5.75 imes 10^5$	999
	$CHCl_3$	0.999	555	4.75	425	$5.61 imes 10^8$	$5.62 imes 10^5$	999
	THF	0.084	621	4.77	422	$4.96 imes 10^7$	$5.39 imes 10^8$	0.092
	CH_3CN	0.002	682	4.78	413	$9.04 imes 10^5$	$6.02 imes 10^8$	0.002
	DMF	0.002	699	4.73	423	$1.16 imes 10^6$	$5.36 imes10^8$	0.002
^a All spectra were measured at 295 K.								

whereas the fluorescence maximum of **6** and **7** are shifted to longer wavelengths as solvent polarity increase. Although the quantum yield of **6** is not altered with a change in the solvent polarity, that of **7** remarkably decreases with an increase in the solvent polarity. The observed effect of the solvent on the Φ_f values of **6** and **7** can be interpreted by a change in the k_r and k_d values of **6** and **7** with a change in the solvent polarity. The k_r and k_d values of **6** are not so altered by solvent polarity. On the contrary the k_r values decrease and the k_d values increase for **7** with an increase in solvent polarity. The contrasting solvent polarity effect on $\Phi_{\rm f}$, $\lambda_{\rm em}$, $k_{\rm r}$, and $k_{\rm d}$ could be explained by a difference in the dipole moment in the excited state ($\mu_{\rm e}$) and in the ground state ($\mu_{\rm g}$) of **6** ($\mu_{\rm e} = 10.74 \text{ D} < \mu_{\rm g} = 11.52 \text{ D}$) and **7** ($\mu_{\rm e} = 12.89 \text{ D} > \mu_{\rm g} = 12.75 \text{ D}$) (see Supporting Information).

In conclusion, we succeeded in the creation of a highly efficient violet fluorophore (**3**, Φ_f 0.86, λ_{em} 392 nm) of polycyano OPE type, in contrast to TCNE and TCNQ, which scarcely fluoresce ($\Phi_f < 10^{-4}$). Furthermore, we created very intense blue (**4**, λ_{em} 455 nm) and yellow (**7**, λ_{em} 555 nm) fluorophores ($\Phi_f \approx 1.0$, log $\epsilon \approx 5$) by an introduction of the appropriate end-donor group. In addition, contrasting solvent dependency of the emission efficiency (Φ_f) of **6** and **7** and a linear relationship between Φ_f and σ_p -X over the whole region of σ_p -X are other interesting findings.

Acknowledgment. This work was supported by Grantin-Aid for Creative Scientific Research (no. 16GS0209) and Scientific Research (no. 16550131) from the Ministry of Education, Science, Sport, and Culture of Japan.

Supporting Information Available: Synthesis, spectral data, solvent dependency, plots of λ_{em} and Φ_f versus σ , plots of k_r and k_d versus n, and MO calculation for polycyano OPEs modified by donor and acceptor groups. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0528991